Resource Lesson
Freefall: Horizontally Released Projectiles (2DMotion)
Printer Friendly Version
When a projectile is released with a nonzero horizontal velocity, its trajectory takes on the shape of a parabola. There are now two dimensions to its motion:
Vertically, gravity is still accelerating it at 9.8 m/sec
^{2}
.
Horizontally, there is no acceleration since gravity acts at right angles to that velocity's component.
Consequently, the trajectory must be analyzed in two parts.
Horizontally, the projectile travels at a constant velocity. Gravity acts perpendicularly to the projectile's horizontal component and therefore does not produce any linear acceleration. In the following diagram, the fact that the horizontal velocity remains constant is indicated by the equally spaced dots across the top. Vertically, the projectile is accelerating towards the center of the earth at the rate of 9.8 m/sec
^{2}
. This uniform acceleration is indicated by the fact that the vertical dots have an everincreasing separation. As a direct consequence of the equation s = v
_{o}
t + ½ at
^{2}
, the vertical spacing between dots increases by odd integers.
When a projectile is released completely horizontally, then we start with the following conditions:
Horizontal motion
Vertical motion
time
a = 0
a =

9
.
8 m/sec
^{2}
v = v
_{H}
v
_{o}
= 0
R = v
_{H}
t
s = v
_{o}
t + ½at
^{2}
In this table, the variable, R, represents the range of the projectile, or the horizontal distance that the projectile travels from the point of release until it strikes the ground. Note that the time, crosses between the components. That is, time is a parameter that applies to both columns  a common quantity.
Refer to the following information for the next five questions.
While standing on an elevated balcony, a child tosses a penny horizontally at 3 m/sec from its railing. The penny lands on the ground floor 1.5 seconds later.
How high is the balcony above the ground floor?
If he tossed the coin at horizontally 3 m/sec, what was the penny's range?
How fast was the penny traveling horizontally when it struck the ground floor?
How fast was it travelling vertically when it struck the floor?
Was any point in the penny's trajectory ever higher than the balcony's railing?
Refer to the following information for the next four questions.
While standing on a 30 meter bridge, a fisherman tosses some unused bait off the bridge. He releases it horizontally at 3 m/sec.
How long does the bait take to hit the water under the bridge?
How fast is it traveling horizontally when it strikes the water?
How fast is it traveling vertically when it strikes the water?
What is its range? That is, how far does it travel horizontally before striking the water?
Related Documents
Lab:
Labs 
A Photoelectric Effect Analogy
Labs 
Acceleration Down an Inclined Plane
Labs 
Ballistic Pendulum: Muzzle Velocity
Labs 
Coefficient of Friction
Labs 
Coefficient of Kinetic Friction (pulley, incline, block)
Labs 
Collision Pendulum: Muzzle Velocity
Labs 
Conservation of Momentum
Labs 
Cookie Sale Problem
Labs 
Flow Rates
Labs 
Freefall MiniLab: Reaction Times
Labs 
Freefall: Timing a Bouncing Ball
Labs 
Galileo Ramps
Labs 
Gravitational Field Strength
Labs 
Home to School
Labs 
InterState Map
Labs 
LAB: Ramps  Accelerated Motion
Labs 
LabPro: Newton's 2nd Law
Labs 
LabPro: Uniformly Accelerated Motion
Labs 
Mass of a Rolling Cart
Labs 
Moment of Inertia of a Bicycle Wheel
Labs 
Monkey and the Hunter Animation
Labs 
Monkey and the Hunter Screen Captures
Labs 
Projectiles Released at an Angle
Labs 
Ramps: Sliding vs Rolling
Labs 
Range of a Projectile
Labs 
Roller Coaster, Projectile Motion, and Energy
Labs 
Rube Goldberg Challenge
Labs 
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs 
Terminal Velocity
Labs 
Video LAB: A Gravitron
Labs 
Video Lab: Ball Bouncing Across a Stage
Labs 
Video LAB: Ball ReBounding From a Wall
Labs 
Video Lab: Cart Push #2 and #3
Labs 
Video Lab: Falling Coffee Filters
Labs 
Video Lab: TwoDimensional Projectile Motion
Resource Lesson:
RL 
Accelerated Motion: A Data Analysis Approach
RL 
Accelerated Motion: VelocityTime Graphs
RL 
Analyzing SVA Graph Combinations
RL 
Average Velocity  A Calculus Approach
RL 
Chase Problems
RL 
Chase Problems: Projectiles
RL 
Comparing Constant Velocity Graphs of PositionTime & VelocityTime
RL 
Constant Velocity: PositionTime Graphs
RL 
Constant Velocity: VelocityTime Graphs
RL 
Derivation of the Kinematics Equations for Uniformly Accelerated Motion
RL 
Derivatives: Instantaneous vs Average Velocities
RL 
Directions: Flash Cards
RL 
Freefall: Projectiles in 1Dimension
RL 
Freefall: Projectiles Released at an Angle (2DMotion)
RL 
Monkey and the Hunter
RL 
Summary: Graph Shapes for Constant Velocity
RL 
Summary: Graph Shapes for Uniformly Accelerated Motion
RL 
SVA: Slopes and Area Relationships
RL 
Vector Resultants: Average Velocity
Review:
REV 
Test #1: APC Review Sheet
Worksheet:
APP 
Hackensack
APP 
The Baseball Game
APP 
The Big Mac
APP 
The Cemetary
APP 
The Golf Game
APP 
The Spring Phling
CP 
2D Projectiles
CP 
Dropped From Rest
CP 
Freefall
CP 
NonAccelerated and Accelerated Motion
CP 
Tossed Ball
CP 
Up and Down
NT 
Average Speed
NT 
BackandForth
NT 
Crosswinds
NT 
Headwinds
NT 
Monkey Shooter
NT 
Pendulum
NT 
Projectile
WS 
Accelerated Motion: Analyzing VelocityTime Graphs
WS 
Accelerated Motion: Graph Shape Patterns
WS 
Accelerated Motion: Practice with Data Analysis
WS 
Advanced Properties of Freely Falling Bodies #1
WS 
Advanced Properties of Freely Falling Bodies #2
WS 
Advanced Properties of Freely Falling Bodies #3
WS 
Average Speed and Average Velocity
WS 
Average Speed Drill
WS 
Charged Projectiles in Uniform Electric Fields
WS 
Chase Problems #1
WS 
Chase Problems #2
WS 
Chase Problems: Projectiles
WS 
Combining Kinematics and Dynamics
WS 
Constant Velocity: Converting Position and Velocity Graphs
WS 
Constant Velocity: PositionTime Graphs #1
WS 
Constant Velocity: PositionTime Graphs #2
WS 
Constant Velocity: PositionTime Graphs #3
WS 
Constant Velocity: VelocityTime Graphs #1
WS 
Constant Velocity: VelocityTime Graphs #2
WS 
Constant Velocity: VelocityTime Graphs #3
WS 
Converting st and vt Graphs
WS 
Energy Methods: More Practice with Projectiles
WS 
Energy Methods: Projectiles
WS 
Force vs Displacement Graphs
WS 
Freefall #1
WS 
Freefall #2
WS 
Freefall #3
WS 
Freefall #3 (Honors)
WS 
Horizontally Released Projectiles #1
WS 
Horizontally Released Projectiles #2
WS 
Kinematics Along With Work/Energy
WS 
Kinematics Equations #1
WS 
Kinematics Equations #2
WS 
Kinematics Equations #3: A Stop Light Story
WS 
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS 
PositionTime Graph "Story" Combinations
WS 
Projectiles Released at an Angle
WS 
Rotational Kinetic Energy
WS 
SVA Relationships #1
WS 
SVA Relationships #2
WS 
SVA Relationships #3
WS 
SVA Relationships #4
WS 
SVA Relationships #5
WS 
Work and Energy Practice: An Assortment of Situations
TB 
2A: Introduction to Motion
TB 
2B: Average Speed and Average Velocity
TB 
Antiderivatives and Kinematics Functions
TB 
Honors: Average Speed/Velocity
TB 
Kinematics Derivatives
TB 
Projectile Summary
TB 
Projectile Summary
TB 
Projectiles Mixed (Vertical and Horizontal Release)
TB 
Projectiles Released at an Angle
TB 
Set 3A: Projectiles
PhysicsLAB
Copyright © 19972021
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton